Like DevOps, MLOps is gaining traction as an essential part of any machine learning set up.

Like DevOps, MLOps is gaining traction as an essential part of any machine learning set up. Practising MLOps means that you advocate for automation and monitoring at every step of ML system construction, including integration, testing, releasing, deployment and infrastructure management. Data scientists can implement and train an ML model with predictive performance on an offline holdout dataset and given relevant training data for their use case. However, the real challenge isn't building an ML model. The challenge is building an integrated ML system and to continuously operate it in production.

How Kodez can help

Using our experience helping AGL with one of the largest and most successful MLOps deployments in Australia, Kodez aims to unlock the benefits of MLOps to other customers.

In this exercise we used;

We worked closely with Microsoft and AGL, implementing various components in the MLOps pipelines and infrastructure.

Take the next step

As enterprises build their business vision around intelligence, the need for machine learning intensifies. Work with Kodez, and we will bring added reliability and optimization to machine learning models.

Interested in similar solution?

Lets talk.

Case Studies

Learn how we helped Fitness Passport with a range of multi cloud solutions
learn more
Learn how we helped Spotless with a disaster recovery solution
learn more
Learn how we helped PeopleStreme with their application re-engineering jouryney
learn more
Learn how we helped AGL save $2 million in annual cloud costs
learn more

Thoughts, stories and ideas.

March 8, 2021
Guide to choosing an Compute option in Azure Machine Learning service

Azure MachineLearning Service provides four main compute options each with a specific purpose attached to it. In this post we will go through each of those and see where we can occupy them in your ML experiments.

learn more
July 6, 2020
Building Machine Learning Pipelines without Coding

In the era of Industry 4.0 where data and predictive analytics players the major role, developing machine learning pipelines have become an essential in intelligent application development.

learn more
June 9, 2020
Create a FAQ Bot using QNA Maker Service

Since instant messaging applications being popular among the users, embedding conversational agents or the Chatbots with such services are essential for better user experience.

learn more