Like DevOps, MLOps is gaining traction as an essential part of any machine learning set up.
Like DevOps, MLOps is gaining traction as an essential part of any machine learning set up. Practising MLOps means that you advocate for automation and monitoring at every step of ML system construction, including integration, testing, releasing, deployment and infrastructure management. Data scientists can implement and train an ML model with predictive performance on an offline holdout dataset and given relevant training data for their use case. However, the real challenge isn't building an ML model. The challenge is building an integrated ML system and to continuously operate it in production.
Using our experience helping AGL with one of the largest and most successful MLOps deployments in Australia, Kodez aims to unlock the benefits of MLOps to other customers.
In this exercise we used;
We worked closely with Microsoft and AGL, implementing various components in the MLOps pipelines and infrastructure.
As enterprises build their business vision around intelligence, the need for machine learning intensifies. Work with Kodez, and we will bring added reliability and optimization to machine learning models.
In the era of Industry 4.0 where data and predictive analytics players the major role, developing machine learning pipelines have become an essential in intelligent application development.
Since instant messaging applications being popular among the users, embedding conversational agents or the Chatbots with such services are essential for better user experience.
Build 2020 day 2, kick started on 20th May as a virtual event. On second day of the event covers tons of updates and announcements around Azure.